The electrostatic problem of a portion of sphere protruding from a plane electrode in an electric field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1981 J. Phys. A: Math. Gen. 14945
(http://iopscience.iop.org/0305-4470/14/4/022)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 05:44

Please note that terms and conditions apply.

The electrostatic problem of a portion of sphere protruding from a plane electrode in an electric field

R Le Ny
Laboratoire de Physique Expérimentale, Institut de Physique de l'Université de Nantes, 2, rue de la Houssinière, F44072 Nantes Cedex, France

Received 9 July 1980, in final form 6 October 1980

Abstract

The method used by Lebedev and Skalskaya, for solving the electrostatic problem of a grounded sphere lying on a plane in an electric field, is generalised to the case of a portion of sphere protruding from a plane electrode. Expressions are developed for the electrical field on the surface and along the axis of the sphere. Results are checked in elementary cases for which the solution is already known. Numerical values of charge and force coefficients are tabulated.

1. Introduction

Many problems (gas or vacuum discharge initiation, particle levitation, etc) require the knowledge of the field distribution, of the electric charge and of the electrostatic force on a protrusion from a plane electrode.

The solution is more or less readily found by means of elementary computations in simple cases: half-cylinder, hemisphere, half-spheroid, etc (Durand 1966).

In this paper we develop the mathematical treatment of the problem of an electrically stressed conducting sphere more or less embedded in a plane electrode with the method already used by Lebedev and Skalskaya (1962) for a sphere lying on a plane.

2. Potential function V

Let a be the radius of the sphere and C its centre. The sphere (C, a) and the plane ($z=0$) intersect in a circle of radius c and centre O (figure 1).

Let E_{0} be the applied uniform electrical field parallel to the axis $O z$ of the protrusion. The potential function V is determined by integration of Laplace's equation

$$
\Delta V=0
$$

with boundary conditions

$$
\left.V\right|_{z=0}=\left.0 \quad V\right|_{\mathscr{f}}=\left.0 \quad V\right|_{z \rightarrow \infty}=E_{0} z .
$$

By introducing toroidal coordinates (α, β) related to cylindrical coordinates (r, z) by

$$
z+\mathrm{i} r=\mathrm{i} c \operatorname{coth}\left[\frac{1}{2}(\alpha+\mathrm{i} \beta)\right]
$$

Figure 1. Sphere embedded in a plane.

Laplace's equation becomes

$$
\frac{\partial}{\partial \alpha}\left(\frac{\sinh \alpha}{\cosh \alpha-\cos \beta} \frac{\partial V}{\partial \alpha}\right)+\frac{\partial}{\partial \beta}\left(\frac{\sinh \alpha}{\cosh \alpha-\cos \beta} \frac{\partial V}{\partial \beta}\right)=0
$$

with boundary conditions

$$
\left.V\right|_{\beta=0}=\left.0 \quad V\right|_{\beta=\beta_{0}}=\left.0 \quad V\right|_{z \rightarrow \infty}=E_{0} c \frac{\sin \beta}{\cosh \alpha-\cos \beta}
$$

where β_{0} is the value of the β coordinate corresponding to the surface \mathscr{S} of the spherical protrusion and defined by $\sin \beta_{0}=c / a$.

Substituting $V=(2 \cosh \alpha-2 \cos \beta)^{1 / 2} v$, we find a particular solution

$$
\begin{aligned}
& V_{\nu}=(2 \cosh \alpha-2 \cos \beta)^{1 / 2}\left(A_{\nu} P_{\nu-1 / 2}(\cosh \alpha)+B_{\nu} Q_{\nu-1 / 2}(\cosh \alpha)\right) \\
& \times\left(C_{\nu} \cos \nu \beta+D_{\nu} \sin \nu \beta\right) .
\end{aligned}
$$

$P_{\nu-1 / 2}(\cosh \alpha)$ and $Q_{\nu-1 / 2}(\cosh \alpha)$ are Legendre's functions of the first and second kind (Lebedev 1965); $A_{\nu}, B_{\nu}, C_{\nu}$ and D_{ν} are unknown coefficients.

The potential V is finite, and the problem can be solved by superposition of solutions of the form

$$
V_{\tau}=(2 \cosh \alpha-2 \cos \beta)^{1 / 2}\left(M_{\tau} \cosh \tau \beta+N_{\tau} \sinh \tau \beta\right) P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha)
$$

after setting $\nu=\mathrm{i} \tau(\tau \geqslant 0)$. We look for a solution of the form

$$
V=E_{0} z+\int V_{\tau} \mathrm{d} \tau
$$

Then
$V=E_{0} z+(2 \cosh \alpha-2 \cos \beta)^{1 / 2} \int_{0}^{\infty}\left(M_{\tau} \cosh \tau \beta+N_{\tau} \sinh \tau \beta\right) P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha) \mathrm{d} \tau$
but $V=0$ on the plane $\beta=0$, hence $M_{\tau}=0$ and
$V=\frac{E_{0} c \sin \beta}{\cosh \alpha-\cos \beta}+(2 \cosh \alpha-2 \cos \beta)^{1 / 2} \int_{0}^{\infty}\left(N_{\tau} \sinh \tau \beta\right) P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha) \mathrm{d} \tau$.
On the portion of sphere ($\beta=\beta_{0}$), V=0, hence

$$
\int_{0}^{\infty}\left(N_{\tau} \sinh \tau \beta_{0}\right) P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha) \mathrm{d} \tau=-2 E_{0} c \frac{\sin \beta_{0}}{\left(2 \cosh \alpha-2 \cos \beta_{0}\right)^{3 / 2}} .
$$

By differentiation of the well known formula (Lebedev 1965)

$$
\frac{1}{\left(2 \cosh \alpha-2 \cos \beta_{0}\right)^{1 / 2}}=\int_{0}^{\infty} \frac{\cosh \left(\pi-\beta_{0}\right) \tau}{\cosh \pi \tau} P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha) \mathrm{d} \tau
$$

we get

$$
N_{\tau} \sinh \tau \beta_{0}=-2 E_{0} c\left[\tau \sinh \left(\pi-\beta_{0}\right) \tau\right] / \cosh \pi \tau
$$

and after some transformations, we find
$V(\alpha, \beta)=2 E_{0} c(2 \cosh \alpha-2 \cos \beta)^{1 / 2} \int_{0}^{\infty} \tau \frac{\sinh \pi \tau}{\cosh \pi \tau} \frac{\sinh \left(\beta_{0}-\beta\right) \tau}{\sinh \beta_{0} \tau} P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha) \mathrm{d} \tau$.
$P_{-1 / 2+\mathrm{i} r}(\cosh \alpha)$ is sometimes called the conical function or Mehler function (Robin 1958).

3. Electrical field $E_{\mathscr{S}}$ on the surface of the portion of sphere

3.1. Expression of $E_{\mathscr{C}} / E_{0}$

From V and

$$
\frac{\partial V}{\partial n}=\frac{\cosh \alpha-\cos \beta}{c} \frac{\partial V}{\partial \beta}
$$

we find that

$$
\frac{E_{\mathscr{G}}}{E_{0}}=\left(2 \cosh \alpha-2 \cos \beta_{0}\right)^{3 / 2} \int_{0}^{\infty} \frac{\tau^{2} \tanh \pi \tau}{\sinh \beta_{0} \tau} P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha) \mathrm{d} \tau .
$$

3.2. Field E_{S} on the sphere apex

In this case $\alpha=0$ and $P_{-1 / 2+\mathrm{i} \tau}(1)=1$, so that

$$
\frac{E_{S}}{E_{0}}=\left(\frac{\sin \frac{1}{2} \beta_{0}}{\frac{1}{2} \beta_{0}}\right)^{3} \int_{0}^{\infty} \frac{x^{2} \tanh \left(\pi x / \beta_{0}\right)}{\sinh x} \mathrm{~d} x
$$

with

$$
\int_{0}^{\infty} \frac{x^{2} \tanh \left(\pi x / \beta_{0}\right)}{\sinh x} \mathrm{~d} x=\frac{7}{2} \zeta(3)-\sum_{n=1}^{\infty}(-1)^{n+1} \zeta\left(3, \frac{1}{2}+\pi n / \beta_{0}\right) .
$$

$\zeta(\alpha, a)$ is the Riemann function (Campbell 1966).

Particular cases:
$\beta_{0}=0$ (sphere)

$$
\frac{E_{S}}{E_{0}}=\int_{0}^{\infty} \frac{x^{2}}{\sinh x} \mathrm{~d} x=\frac{7}{2} \zeta(3)=4.207199 \ldots
$$

$\beta_{0}=\pi / 2$ (hemisphere)

$$
\frac{E_{S}}{E_{0}}=\left(\frac{4}{\pi}\right)^{3} \frac{1}{\sqrt{2}} \int_{0}^{\infty} \frac{x^{2} \cosh x}{\cosh 2 x} \mathrm{~d} x=3
$$

$\beta_{0}=\pi$ (plane)

$$
\frac{E_{S}}{E_{0}}=\left(\frac{2}{\pi}\right)^{3} \int_{0}^{\infty} \frac{x^{2}}{\cosh x} \mathrm{~d} x=1
$$

Thus the above results fit well known values.

3.3. Other expressions of $E_{\mathscr{S}} / E_{0}$

Substituting the Mehler function by its integral representation (Lebedev et al 1965)

$$
P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha)=\frac{2}{\pi}(\operatorname{coth} \pi \tau) \lim _{x \rightarrow \alpha} \int_{x}^{\infty} \frac{(\sin x \tau) \mathrm{d} x}{(2 \cosh x-2 \cosh \alpha)^{1 / 2}},
$$

reversing the order of integration and using the familiar properties of Fourier sine transforms (Erdelyi et al 1954), we obtain

$$
\begin{aligned}
& \int_{0}^{\infty} \tau^{2} \frac{\tanh \pi \tau}{\sinh \beta_{0} \tau} P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha) \mathrm{d} \tau=I \\
& \quad=\frac{\pi^{2}}{\beta_{0}^{3}} \lim _{x \rightarrow \alpha} \int_{x}^{\infty} \frac{\mathrm{d} x}{(2 \cosh x-2 \cosh \alpha)^{1 / 2}} \frac{\sinh \left(\pi x / 2 \beta_{0}\right)}{2 \cosh \left(\pi x / 2 \beta_{0}\right)}
\end{aligned}
$$

and with the substitution $\sinh \frac{1}{2} x=\sinh \frac{1}{2} \alpha \cosh y$ we have

$$
I=\frac{\pi^{2}}{2 \beta_{0}^{3}} \int_{0}^{\infty} \frac{\mathrm{d} y}{\cosh \frac{1}{2} x} \frac{\sinh \left(\pi x / 2 \beta_{0}\right)}{\cosh ^{3}\left(\pi x / 2 \beta_{0}\right)}
$$

I is readily obtained when π / β_{0} is a positive integer N :
$N=1$ (flat disc)

$$
I=\frac{1}{2 \pi} \int_{0}^{\infty} \frac{\mathrm{d} y}{\cosh \frac{1}{2} x}=\frac{1}{8} \frac{1}{\cosh ^{3} \frac{1}{2} \alpha} \quad \frac{E_{\varphi}}{E_{0}}=1
$$

$N=2$ (hemisphere)

$$
I=\frac{3}{2 \sqrt{2}} \frac{1}{\left(2 \cosh ^{2} \frac{1}{2} \alpha-1\right)^{5 / 2}} \quad \frac{E_{\varphi}}{E_{0}}=\frac{3}{\cosh \alpha}=3 \cos \theta
$$

$N=3\left(\beta_{0}=\pi / 3\right)$

$$
I=\frac{1}{8}\left(\frac{1}{\cosh ^{3} \frac{1}{2} \alpha}+\frac{36}{\left(4 \cosh ^{2} \frac{1}{2} \alpha-3\right)^{5 / 2}}-\frac{8}{\left(4 \cosh ^{2} \frac{1}{2} \alpha-3\right)^{3 / 2}}\right)
$$

$$
\frac{E_{\mathscr{G}}}{E_{0}}=\frac{\sqrt{2}}{4}\left(\frac{1}{1+\cos \theta}\right)^{3 / 2}+3 \cos \theta+\frac{1}{2} \quad \text { with } E_{S} / E_{0}=\frac{29}{8}
$$

$N=4\left(\beta_{0}=\pi / 4\right)$

$$
I=\frac{1}{8}\left[\sqrt{2}\left(\frac{1}{\left(\cosh ^{2} \frac{1}{2} \alpha-b\right)^{3 / 2}}-\frac{1}{\left(\cosh ^{2} \frac{1}{2} \alpha-a\right)^{3 / 2}}\right)\right.
$$

$$
\left.+\frac{3}{4}\left(\frac{1}{\left(\cosh ^{2} \frac{1}{2} \alpha-a\right)^{5 / 2}}+\frac{1}{\left(\cosh ^{2} \frac{1}{2} \alpha-b\right)^{5 / 2}}\right)\right]
$$

with

$$
\begin{gathered}
a=\frac{1}{2}(1+1 / \sqrt{2}) \quad b=\frac{1}{2}(1-1 / \sqrt{2}) \\
\frac{E_{\mathscr{Y}}}{E_{0}}=\sqrt{2}\left[\left(\frac{\sqrt{2}}{4 \cos \theta+3 \sqrt{2}}\right)^{3 / 2}-1\right]+3\left(\cos \theta+\frac{1}{\sqrt{2}}\right)\left[1+\left(\frac{\sqrt{2}}{4 \cos \theta+3 \sqrt{2}}\right)^{5 / 2}\right]
\end{gathered}
$$

with

$$
E_{S} / E_{0}=19 \sqrt{2}-23=3.870
$$

4. Electrical field on the axis

4.1. Expression of $E($ axis $) / E_{0}$

Knowing V, it is easy to find that

$$
\begin{gathered}
\frac{E(\text { axis })}{E_{0}}=(2-2 \cos \beta)\left(\frac{\sin \beta}{(2-2 \cos \beta)^{1 / 2}} \int_{0}^{\infty} \tau \tanh \pi \tau \frac{\sinh \left(\beta_{0}-\beta\right) \tau}{\sinh \beta_{0} \tau} \mathrm{~d} \tau\right. \\
\left.-(2-2 \cos \beta)^{1 / 2} \int_{0}^{\infty} \tau^{2} \tanh \pi \tau \frac{\cosh \left(\beta_{0}-\beta\right) \tau}{\sinh \beta_{0} \tau} \mathrm{~d} \tau\right)
\end{gathered}
$$

or

$$
\begin{aligned}
\frac{E(\text { axis })}{E_{0}}=1+ & 4 \sin ^{2} \frac{\beta}{2} \cos \frac{\beta}{2} \int_{0}^{\infty} \tau \frac{\sinh \left(\pi-\beta_{0}\right) \tau}{\cosh \pi \tau} \frac{\sinh \tau \beta}{\sinh \tau \beta_{0}} \mathrm{~d} \tau \\
& +8 \sin ^{3} \frac{\beta}{2} \int_{0}^{\infty} \tau^{2} \frac{\sinh \left(\pi-\beta_{0}\right) \tau}{\cosh \pi \tau} \frac{\cosh \tau \beta}{\sinh \tau \beta_{0}} \mathrm{~d} \tau .
\end{aligned}
$$

A numerical computation of these two integrals can be made, either using GaussLaguerre's method (Rabinowitz and Weiss 1959) or by replacing integrals by Riemann functions (Campbell 1966).

4.2. $\pi / \beta_{0}=N$ (N positive integer)

In this case

$$
\frac{E(\text { axis })}{E_{0}}=1+2 \frac{\beta}{\beta_{0}^{3}} \sin ^{2} \frac{\beta}{2}\left(\cos \frac{\beta}{2}\right) S_{1}+\frac{2}{\beta_{0}^{3}}\left(\sin ^{3} \frac{\beta}{2}\right) S_{2}
$$

with

$$
\begin{aligned}
& S_{1}=\sum_{n=0}^{\infty}(-1)^{n} \sum_{m=1}^{N-1} \frac{m+N n}{\left[(m+N n)^{2}-y^{2}\right]^{2}} \\
& S_{2}=\sum_{n=0}^{\infty}(-1)^{n} \sum_{m=1}^{N-1}\left(\frac{1}{[(m+N n)-y]^{3}}+\frac{1}{[(m+N n)+y]^{3}}\right)
\end{aligned}
$$

and

$$
y=\beta / 2 \beta_{0} .
$$

4.3. Check of the above result for a hemisphere

$$
\begin{gathered}
S_{1}=\sum_{n=0}^{\infty}(-1)^{n} \frac{1+2 n}{\left[(1+2 n)^{2}-y^{2}\right]^{2}}=\frac{\pi^{2}}{16 y} \frac{\sin \frac{1}{2} \pi y}{\cos ^{2} \frac{1}{2} \pi y} \\
S_{2}=\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{1}{[(1+2 n)-y]^{3}}+\frac{1}{[(1+2 n)+y]^{3}}\right)=\frac{\pi^{3}}{16}\left(\frac{2}{\cos ^{3} \frac{1}{2} \pi y}-\frac{1}{\cos \frac{1}{2} \pi y}\right)
\end{gathered}
$$

with $y=\beta / 2 \beta_{0}=\beta / \pi$. After reduction,

$$
E(\text { axis }) / E_{0}=1+2 \tan ^{3} \frac{1}{2} \beta=1+2(c / z)^{3}
$$

which is the well known formula.

4.4. Limiting case: sphere

According to the above results,
$S_{1}=\sum_{n=1}^{\infty} \frac{n}{\left(n^{2}-y^{2}\right)^{2}}+\sum_{n=1}^{\infty}(-1)^{n} \frac{n v}{\left[(n v)^{2}-y^{2}\right]^{2}}+2 \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}(-1)^{n} \frac{m+n v}{\left[(m+n v)^{2}-y^{2}\right]^{2}}$
with $v=\pi / \beta_{0}$. Then

$$
\lim _{v \rightarrow \infty} S_{1}=\sum_{n=1}^{\infty} \frac{n}{\left(n^{2}-y^{2}\right)^{2}}
$$

and in the same way

$$
\lim _{v \rightarrow \infty} S_{2}=2 \sum_{n=1}^{\infty} n \frac{n^{2}+3 y^{2}}{\left(n^{2}-y^{2}\right)^{3}}
$$

and

$$
\frac{E(\text { axis })}{E_{0}}=1+8 y^{3} \sum_{n=1}^{\infty} n \frac{n^{2}+y^{2}}{\left(n^{2}-y^{2}\right)^{3}} \quad \text { with } y=\frac{a}{z} .
$$

We find again a classical result (Boulloud 1958), which can be written with very good accuracy:
$\frac{E(\text { axis })}{E_{0}}=1+8 y^{3}\left(\frac{1+y^{2}}{\left(1-y^{2}\right)^{3}}+2 \frac{4+y^{2}}{\left(4-y^{2}\right)^{3}}+3 \frac{9+y^{2}}{\left(9-y^{2}\right)^{3}}+A(1)+2^{2} y^{2} A(2)+3^{2} y^{4} A(3)+\ldots\right)$
with

$$
\begin{array}{ll}
A(1)=0.400198662 \times 10^{-1} & A(2)=0.156252881 \times 10^{-2} \\
A(3)=0.795300112 \times 10^{-4} & A(4)=0.446256266 \times 10^{-5} \\
A(5)=0.262324850 \times 10^{-6} & A(6)=0.158096041 \times 10^{-7} .
\end{array}
$$

5. Total electrical charge Q on the protruding part of the sphere

5.1. Q function

The Q function is given by the expression

$$
Q=-\varepsilon_{0} \iint\left(\frac{\partial V}{\partial n}\right) \mathrm{d} S
$$

with

$$
\frac{\partial V}{\partial n}=\frac{\cosh \alpha-\cos \beta}{c} \frac{\partial V}{\partial \beta} \quad \mathrm{~d} S=2 \pi c^{2} \frac{(\sinh \alpha) \mathrm{d} \alpha}{\left(\cosh \alpha-\cos \beta_{0}\right)^{2}} .
$$

Hence
$Q=8 \pi \varepsilon_{0} E_{0} c^{2} \int_{0}^{\infty} \frac{(\sinh \alpha) \mathrm{d} \alpha}{\left(2 \cosh \alpha-2 \cos \beta_{0}\right)^{1 / 2}} \int_{0}^{\infty} \tau^{2} \frac{\tanh \pi \tau}{\sinh \beta_{0} \tau} P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha) \mathrm{d} \tau$.
Reversing the order of integration, we have $Q=8 \pi \varepsilon_{0} E_{0} c^{2} \int_{0}^{\infty} \tau^{2} \frac{\tanh \pi \tau}{\sinh \beta_{0} \tau} \mathrm{~d} \tau \int_{0}^{\infty} \frac{(\sinh \alpha) P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha) \mathrm{d} \alpha}{\left(2 \cosh \alpha-2 \cos \beta_{0}\right)^{1 / 2}}$.
But

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{(\sinh \alpha) P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha) \mathrm{d} \alpha}{\left(2 \cosh \alpha-2 \cos \beta_{0}\right)^{1 / 2}} \\
& \quad=\int_{0}^{\infty}(\sinh \alpha) P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha) \mathrm{d} \alpha \int_{0}^{\infty} \frac{\cosh \left(\pi-\beta_{0}\right) \tau}{\cosh \pi \tau} P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha) \mathrm{d} \tau
\end{aligned}
$$

and hence

$$
\begin{aligned}
Q=8 \pi \varepsilon_{0} E_{0} c^{2} & \int_{0}^{\infty} \tau^{2} \frac{\tanh \pi \tau}{\sinh \beta_{0} \tau} \mathrm{~d} \tau \int_{0}^{\infty}(\sinh \alpha) P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha) \mathrm{d} \alpha \\
& \times \int_{0}^{\infty}\left(\frac{\cosh \left(\pi-\beta_{0}\right) \tau}{\cosh \pi \tau} \frac{1}{\tau \tanh \pi \tau}\right)(\tau \tanh \pi \tau) P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha) \mathrm{d} \tau .
\end{aligned}
$$

By using the Mehler-Fock transform (Lebedev et al 1965), we obtain

$$
Q=8 \pi \varepsilon_{0} E_{0} c^{2} \int_{0}^{\infty} \frac{\tau \cosh \left(\pi-\beta_{0}\right) \tau \mathrm{d} \tau}{\sinh \beta_{0} \tau \cosh \pi \tau}=8 \pi \varepsilon_{0} E_{0} c^{2} \int_{0}^{\infty} \tau\left(\operatorname{coth} \beta_{0} \tau-\tanh \pi \tau\right) \mathrm{d} \tau
$$

and after some simple calculations

$$
Q=4 \pi \varepsilon_{0} E_{0} c^{2}\left(\frac{1}{\beta_{0}^{2}} \frac{\pi^{2}}{6}+\frac{1}{12}\right)=4 \pi \varepsilon_{0} E_{0} c^{2} k_{c Q}
$$

or

$$
Q=4 \pi \varepsilon_{0} E_{0} a^{2} \sin ^{2} \beta_{0}\left(\frac{1}{\beta_{0}^{2}} \frac{\pi^{2}}{6}+\frac{1}{12}\right)=4 \pi \varepsilon_{0} E_{0} a^{2} k_{a O}
$$

5.2. Particular cases

The last general results can be checked for some particular values of $\beta_{0}\left(\pi / \beta_{0}=N, N=\right.$ $1,2,3, \ldots)$. However, when $N \geqslant 4$, analytical computations are time consuming.

5.3. Other results

Let h be the penetration depth of the sphere in the plane, and $y=h / 2 a$ (figure 1). Then $h=2 a \sin ^{2} \frac{1}{2} \beta_{0}$ and

$$
k_{a Q}=\frac{1}{3} y(1-y)\left[1+\frac{1}{2}\left(\pi / \sin ^{-1} \sqrt{y}\right)^{2}\right] .
$$

When y is small

$$
k_{a Q}=1.645-1.85 y+0.10 y^{2}
$$

6. Force \boldsymbol{F}

6.1. Expression of F

The force acting on a portion of sphere is given by

$$
F=\frac{1}{2} \varepsilon_{0} \iint_{\mathscr{S}}\left(\frac{\partial V}{\partial n}\right)^{2} \mathrm{~d} S \cos \theta
$$

with

$$
\mathrm{d} S \cos \theta=2 \pi c^{2} \frac{1-\cos \beta_{0} \cosh \alpha}{\left(\cosh \alpha-\cos \beta_{0}\right)^{3}} \sinh \alpha \mathrm{~d} \alpha
$$

Then

$$
\begin{aligned}
F=8 \pi \varepsilon_{0} E_{0}^{2} c^{2} & \int_{0}^{\infty}\left(1-\cos \beta_{0} \cosh \alpha\right) \sinh \alpha \\
& \times\left(\int_{0}^{\infty} \tau^{2} \frac{\tanh \pi \tau}{\sinh \beta_{0} \tau} P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha) \mathrm{d} \tau\right)^{2} \mathrm{~d} \alpha
\end{aligned}
$$

or

$$
F=4 \pi \varepsilon_{0} E_{0}^{2} c^{2} k_{c F}=4 \pi \varepsilon_{0} E_{0}^{2} a^{2} k_{a F}
$$

with

$$
\begin{aligned}
& k_{c F}=2 I_{1}-2\left(\cos \beta_{0}\right) I_{2} \\
& k_{a F}=k_{c F} \sin ^{2} \beta_{0} \\
& I_{1}=\int_{0}^{\infty} \sinh \alpha\left(\int_{0}^{\infty} \tau^{2} \frac{\tanh \pi \tau}{\sinh \beta_{0} \tau} P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha) \mathrm{d} \tau\right)^{2} \mathrm{~d} \alpha
\end{aligned}
$$

$$
I_{2}=\int_{0}^{\infty} \cosh \alpha \sinh \alpha\left(\int_{0}^{\infty} \tau^{2} \frac{\tanh \pi \tau}{\sinh \beta_{0} \tau} P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha) \mathrm{d} \tau\right)^{2} \mathrm{~d} \alpha
$$

6.2. Particular cases

I_{1}, I_{2} and k_{F} can be readily computed when I is known.
$\beta_{0}=\pi$ (flat disc)

$$
I=\frac{1}{8} \frac{1}{\cosh ^{3} \frac{1}{2} \alpha} \quad I_{1}=\frac{1}{64} \quad I_{2}=\frac{3}{64} \quad k_{c F}=\frac{1}{8}
$$

$\beta_{0}=\frac{1}{2} \pi$ (hemisphere)
$I=\frac{3}{2 \sqrt{2}} \frac{1}{\left(2 \cosh ^{2} \frac{1}{2} \alpha-1\right)^{5 / 2}} \quad I_{1}=\frac{9}{32} \quad I_{2}=\frac{3}{8} \quad k_{c F}=\frac{9}{16}=k_{a F}$
$\beta_{0}=\frac{1}{3} \pi$

$$
k_{c F}=2 I_{1}-2(\cos \beta) I_{2}=\frac{281}{3} \times \frac{1}{32}-\frac{5}{3}=1.260 \quad k_{a F}=0.945
$$

$\beta_{0}=\frac{1}{4} \pi$
After some computations

$$
k_{c F}=\frac{1}{8}(131-80 \sqrt{2})=2.232 \quad k_{a F}=1.116
$$

7. Electrical field on the plane

Knowing V and

$$
E=-\frac{\partial V}{\partial n}=-\frac{\cosh \alpha-\cos \beta}{c} \frac{\partial V}{\partial \beta}
$$

we obtain

$$
\frac{E(\beta=0)}{E_{0}}=(2 \cosh \alpha-2)^{3 / 2} \int_{0}^{\infty} \tau^{2} \frac{\tanh \pi \tau}{\tanh \beta_{0} \tau} P_{-1 / 2+\mathrm{i} \tau}(\cosh \alpha) \mathrm{d} \tau
$$

By using the integral representation of Mehler's function and reversing the order of integration,
$\frac{E(\beta=0)}{E_{0}}=\frac{2}{\pi}(2 \cosh \alpha-2)^{3 / 2} \lim _{x \rightarrow \alpha} \int_{x}^{\infty} \frac{\mathrm{d} x}{(2 \cosh x-2 \cosh \alpha)^{1 / 2}} \int_{0}^{\infty} \frac{\tau^{2} \sin x \tau \mathrm{~d} \tau}{\tanh \beta_{0} \tau}$
and after simplification
$\frac{E(\beta=0)}{E_{0}}=\frac{\pi^{2}}{\beta_{0}^{3}}\left(8 \sinh ^{3} \frac{\alpha}{2}\right) \lim _{x \rightarrow \alpha} \int_{\alpha}^{\infty} \frac{\cosh \left(\pi x / 2 \beta_{0}\right) \frac{1}{2} \mathrm{~d} x}{(2 \cosh x-2 \cosh \alpha)^{1 / 2} \sinh ^{3}\left(\pi x / 2 \beta_{0}\right)}$.
When $\pi / \beta_{0}=N$, the integral can be easily computed.

Table 1. Charge and force coefficients versus β_{0} in degrees.

β_{0}	$k_{a Q}$	$k_{a F}$
0	1.644937	1.368724
1	1.644792	1.368590
2	1.644368	1.368188
3	1.643660	1.367518
4	1.642669	1.366580
5	1.641396	1.365376
6	1.639840	1.363905
7	1.638004	1.362168
8	1.635886	1.360165
9	1.633489	1.357899
10	1.630812	1.355368

Table 2. Electrical field, charge and force coefficients versus β_{0} in degrees.

β_{0}	E_{S} / E_{0}	$k_{a Q}$	$k_{a F}$
0	4.2072	1.6449	1.3687
5	4.2029	1.6414	1.3654
10	4.1899	1.6308	1.3554
15	4.1685	1.6133	1.3388
20	4.1386	1.5889	1.3159
25	4.1004	1.5580	1.2868
30	4.0542	1.5208	1.2519
35	4.0002	1.4777	1.2116
40	3.9387	1.4289	1.1663
45	3.8701	1.3750	1.1164
50	3.7946	1.3164	1.0626
55	3.7128	1.2538	1.0054
60	3.6250	1.1875	0.9453
65	3.531 .7	1.1183	0.8831
70	3.4334	1.0467	0.8194
75	3.3306	0.9734	0.7548
80	3.2237	0.8991	0.6901
85	3.1133	0.8244	0.6257
90	3.0000	0.7500	0.5625
95	2.8842	0.6765	0.5009
100	2.7665	0.6045	0.4416
105	2.6474	0.5347	0.3849
110	2.5275	0.4677	0.3315
115	2.4071	0.4038	0.2815
120	2.2869	0.3437	0.2355
125	2.1673	0.2878	0.1935
130	2.0487	0.2364	0.1558
135	1.9315	0.1898	0.1225
140	1.8162	0.1483	0.0936
145	1.7032	0.1119	0.0690
150	1.5927	0.0808	0.0486
155	1.4852	0.0550	0.0322
160	1.3808	0.0344	0.0196
165	1.2799	0.0189	0.0104
170	1.1827	0.0081	0.0044
175	1.0893	0.0020	0.0010
180	1.0000	0.0000	0.0000
0			
0			
0			
0			

8. Numerical results

When β_{0} (in degrees) is small, we obtain the values of $k_{a Q}$ and $k_{a F}$ listed in table 1. These results allow an approximation of $k_{a F}$ in the neighbourhood of $\beta_{0}=0$:

$$
k_{a F}\left(\beta_{0}\right)=k_{a F}(0)\left[1-\frac{9}{28}\left(\frac{\pi}{180}\right)^{2} \beta_{0}^{2}+\frac{1}{27}\left(\frac{\pi}{180}\right)^{4} \beta_{0}^{4}\right] .
$$

This result is very useful for computation of adhesion forces (St John 1971).
Table 2 gives $E_{S} / E_{0}, k_{a O}$ and $k_{a F}$. Intermediate values are easily obtained by classical interpolation formulae (Mineur 1966). This method also allows the calculation of the numerical values of these coefficients as functions of $h / 2 a$, the penetration coefficient of the sphere in the plane.

References

Boulloud A 1958 C. R. Acad. Sci., Paris 246 3325-8
Campbell R 1966 Les Intégrales Eulériennes et leurs applications (Paris: Dunod)
Durand E 1966 Electrostatique: problèmes généraux, conducteurs (Paris: Masson)
Erdelyi A, Magnus W, Oberhettinger F and Tricomi F G 1954 Tables of Integral Transforms vol 1 (New York: McGraw-Hill)
Lebedev N N 1965 Special Functions and their Applications (London: Prentice Hall)
Lebedev N N and Skalskaya I P 1962 Sov. Phys.-Tech. Phys. 7 268-70
Lebedev N N, Skalskaya I P and Uflyand Y S 1965 Problems of Mathematical Physics (London: Prentice Hall)
Mineur H 1966 Techniques de Calcul Numérique (Paris: Dunod)
Rabinowitz P and Weiss G 1959 Math. Tables Aids Comput. 13 285-94
Robin L 1958 Fonctions Sphériques de Legendre et Fonctions Sphéroidales (Paris: Gauthier-Villars)
St John D F 1971 J. Appl. Phys. 42 663-8

